[SUPERCEDES AND REPLACES LOCAL RULE #IV]

supreme Court of Florida

No. AOSC07-38

IN RE: JUROR SELECTION PLAN: LEE COUNTY
ADMINISTRATIVE QRDER

Section 40.225, Florida Statutes, provides for the selection of jurors to serve
within the county by “mechanical, elecironic, or ¢lectrical device.” Pursuant to
that section, a majority of judges within the circuit in which the county l:esides
-must approve, and the chief judge of the circuit must submit, a description of the

method for selecting jﬁrors to the Supreme Court of Florida. Section 40.225(3),
- Florida Statutes, charges the Supreme Court with the review and approval of the
proposed juror selection process, hereinafter referred to as the “juror selection
plan.” |

The use of technology in the selection of jurors has been customary within

Florida fof well over a decade, and the Supreme Court has developed standards
necessary to eﬁsure that juror selection plans satisfy statutory, methodological, and
due process requirements, The Court has tasked the Office of the State Courts

Administrator with evaluating proposed plans to determine their compliance with

- those standards,

On March 27, 2007, the Chief Judge of the Twentieth Judicial Circuit
submitted the Lee County Juror Selection Plan (originally submitted as Twentieth
Judicial Circuit Loocal Rule #1V Amended) for review and approval in accordance
with section 40.225(2), Florida Statutes, The proposed plan reflects changes to
both hardware and software used for juror pooi selection. in Lee County.

The Office of the State Courts Administrator has completed an extensive
review of the proposed Lee County juror selection plaﬁ, including an evaluation of
statutory, due process, statistical, and mathematical elements associated with
selection of jury candidates. The plan meets established requirements for approval,

According]y., the attached Lee County Juror Selection 'Plan,.submitted by
Chief Judge Hugh Hayes on March 27, 2007, is hereby approved for use.

DONE AND ORDERED at Tallahassee, Filorida, on July 9, 2007.

" Chief Justive R, Frédtewis

15
1%

IN THE TWENTIETH JUDICTAL CIRCUIT IN AND FOR THE STATE OF FLORIDA

LOCAL RULE #IV
- Amended -

IN RE: SELECTION OF JURORS BY COMPUTER IN LEE COUNTY

WHEREAS, the present mbthod of selecting jurors can be expedited without additional
expense or loss of the sanctity of random selection by the use of an electronic computer available
for use by Lee County, and

WHEREAS, in accordance with Florida Statute § 40.011, the source of such selection is
from the database of names from the Department of Highway Safety and Motor Vehicles,
restricted to Lee County, which is in.a computer compatible form and in the custody of the Lee
County Clerk of the Circuit Court, and

WHEREAS, in accordance with Florida Statute § 40,011, the source of selection is also
from the list of those whose names do not appear on the Department database, but who have filed
with the Clerk of the Circuit Court an affidavit prescribed in the cited statute, it is therefore,

RESOLVED that the Rules of the Twentieth Judicial Circuit for procedure in all courts

of Lee County in which jury trials are held shall be amended to include this additional Rule

adopting the following alternative plan for the selection of persons for grand or petit jury service;

1. EQUIPMENT: The equipment used in the jury selection application will be a Dell

PowerEdge 2850 Server with 2 Intel Xeon 3.2Ghz processors, 2 GB of memory and 140G of

- RAID 5 disk space running Windows 2003 Server operating system, located in the secured

computer room of the Lee County Clerk of the Circuit Court.
2. ALTERNATIVE METHOD OF SELECTING VENIRE:

a. The source from which names shall be taken is the same as that which is described

above in accordance with Florida Statute § 40.011. On a quarterly basis, the Lee County Clerk

of the Circuit Court shall obtain a computerized listing of names from the Department of

Highway Safety and Motor Vehicles. The Clerk of the Circuit Court will protect the listing and
tapes and keep them securely stored.

b. The Clerk of Circuit Court of Lee County is designated the official custodian of the
computer records of the lists to be used in jury selection and shall ensure they are not accessible
to anyone other than those directly involved in selection of venires, as herein provided.
Functions of the Clerk of the Circuit Court may be performed by his deputies.

¢. The entire list of drivers license holders, identification card holders, and those who
have filed affidavits pursuant to Florida Statute § 40.011 (hereinafter “eligible jurors”) may
comprise the master jury list from which venires will be selected according to the provisions of
paragraph 2(d) below. Alternatively, the Chief Judge or his or her designated representative,
with the aid and assistance of the Clerk of the Circuit Court, may select the master jury list for
the year by lot and at random from the entire list of eligible jurors using the method described in
the attachments hereto.

d. The Clerk of the Circuit Court shall cause jury venires to be selected from the final

jury list programmed into the Lee County computer using the method described in Attachment

- “A” (Method of Jury Selection For Lee County), Attachment “B” (Jury Selection Algorithm For

Lee County) and Attachment “C” (FSI Juror Candidate List Processing Methodology), and in

accordance with directions received from tﬁc Chief Judge or his or hef designated representative.
e. The initial jury selection programming may exclude persons who have been

previously excluded for physical infirmities or inability to comply with other non-correctable

statutory qualifications, A detailed description as to how the list of excluded persons is

" developed and maintained is set forth in the attachments hereto.

f. Attachments “A”, “B”, and “C” shall be iﬁcorporated into this Local Rule as if fully

set forth herein,

IN RE: SELECTION OF JURORS BY COMPUTER IN LEE COUNTY

STATE OF FLORIDA
COUNTY OF LEE

CERTIFICATE

IHEREBY certify that, pursuant to Florida Statute § 40.225, a majority of judges
authorized to conduct jury trials in Lee County, Florida, have consented to the use of the
electronic system which is described in an attachment hereto, and requests the approval of the

Supreme Court of Florida for the use of such system in Lee County, Florida,

DATED this gﬂ‘a@; of Z]WZ , 2007.

gh D Hayes
hief Judge
Twentieth Judicial Circuit

History.- Local Rule #IV (March 20, 1998).

Aitachment “A”

METHOD OF JURY SELECTION FOR LEE COUNTY

Lee County juror source list processing:

Candidates for Lee County petit and grand jury venires are drawn from a list of licensed Florida
residents as provided by the Florida Department of Highway Safety and Motor Vehicles (ie.,
‘drivers list) combined with a lList of all residents indicating a desire to serve as a juror (ie,
affidavit list) in accordance with F.S. 40.011.

The drivers list is drawn quarterly by the Clerk of the Circuit Court for Lee County from the
Department of Highway Safety and Motor Vehicles (DHSMV) via the Florida Association of
Court Clerks (FACC) (see notes 1 and 2) and is maintained, by the Clerk, in accordance with

F.8. 40.011 and 40.022.

The Clerk of the Circuit Court shall purge the final jury selection list of those persons statutorily
excluded from juror service as specified in F.S. 40.013 and 40.022. Additionally, the Clerk of
the Circuit Court shall, at least once a month, purge the jury selection lists of names of those

persons:

Adjudicated mentally incompetent;
Convicted of a felony; or

Deceased,

Other persons as the Chief Judge directs.

BN

All persons so excluded are compiled in a suppression list and provided to JSI to aid in the
production of the final candidate list,

At least once a year, the Clerk of the Circuit Court for Lee County will provide the driver’s list,
the affidavit list and the suppression list, a minimum number of juror candidates required (not
less that 250) and a set of seed values to Jury Systems Incorporated (JSI) who will perform the
actual selection of candidate jurors. A detailed description of the selection process as performed
by JSI is provided in Attachment “C”. A description of the random number generator used in the
selection process is provided in Attachment “B”,

The seed values provided are used by JSI to initialize the random number generator which forms
the basis of the mechanism by which juror candidates are selected “...by lot and at random ...”
as per F.8. 40.225. The Clerk of the Circuit Court will provide JSI with two seed values such
that the first seed value will be between 0 and 31,328 and the second value will be between 0 and

30,081.
These values are selected and calculated as follows;

Initial values will be drawn from the top fen most active stock index as published in The News-
Press Business & Money Section on the Wednesday prior to the request to JSI. Starting with the
first stock on the list, the value in the thousands digit of the trading volume will be used to create

the first seed value. Values will be read sequentially down the list (including leading zeros) until
a number in the range of 0 to 99,999 is read. The second seed value will then be read from the
next set of five active stock indexes exactly as the first. A copy of this page will be retained.
For example, the following list would provide two seed values of 02604 and 45893

| Symbol Volume
F 11,740,800 o
LU 8,592,800 2
PFE 7,576,400 6
EMC 7,180,500 0
NT 5,764,800 4
MOT 5,674,400 4
GE 5,525,900 5
T 5,108,500 8
EWH 4,969,200 9
EW.J 4,553,100 3

These seed values will be converted to the required range using the formula

initial _ value

(* (upper — lower + 1)) + lower
range _base

where intial _value is determined from the stock list as above, the range base is 100,000 (from the
range 0 — 99,999), upper is the upper allowable limit of the seed value to be caleulated and lower
is the lower aliowable limit of the seed value. All division is floating point division and the
result is truncated to the next lower integer.

For example, using the initial value’s selected above,

02604
d 1= *(31328—0+1))+0 = 815.807 = 815
seed _1=(To0000 ¢ |)

45893
d 2= ¥(30081—-0+1)+0=13805.532 =13805
seed 2 - (100000 ()] 3805 :

Juror candidates will be notified sequentially beginning with the first name on the final candidate
list provided by JSI. The Clerk of the Circuit Court will selcct the number of names from the list
required to fill current need in each notification cycle. The number selected will be the total
number of jurors required minus any persons whose service comes due for this period as a result
of a previously court approved postponement. These individuals are tracked separately.
Subsequent juror call ups will begin with the first name following the last named used in the

previous notification cycle,

If the final juror candidate list is exhausted before the next full candidate selection cycle, an
additional list of names may be requested from JSI without repeating the source list processing
as the JSI process randomizes the entire name list of eligible persons in Lee County regardless of
the actual number of names requested by the Clerk of the Circuit Court. Thus, JSI has an
additional pool of names over and above the number requested by the Clerk of the Circuit Court

already processed and available.

To ensure the integrity and verifiability of the selection process, the Clerk of the Circuit Court
will retain a copy of the full final juror candidate name list as developed by JSI along with the
number of candidate names requested in each cycle and the initialization values provided to JSI
in a restricted manner as per F.S. 40.02(2) and F.S. 40.221.

The Clerk of the Circuit Court will purge, monthly, the final juror candidate lists of those persons
recently identified as felons by the Florida Department of Law Enforcement as per F.S.

- 40.022(4).

Notes:
- 1. The Florida Association of Court Clerks is merely a “pass-through™ used by the Department

of Highway Safety and Motor Vehicles to distribute the licensed driver file. The Florida
Association of Court Clerks performs no manipulation, filtration, purging, efc. to the file
received from the Department of Highway Safety and Motor Vehicles. 'The Department of
Highway Safety and Motor Vehicles purges those on the list under the age of 18 and filters
out all non-Lee County residents prior to forwarding the list to the Florida Association of
Court Clerks.
2. All name lists are provided to JSI as ASCII text in no particular sequence or order
Jury Systems, Inc. does all of the processing of the data in-house using their own employees
and equipment. The only exception to this is the optional NCOA (National Change of
-Address) process which is outsourced to an NCOA provider. If the NCOA option is
requested, the file is then sent to an outsourced NCOA provider. The list is then returned to
Jury Systems, Inc, and ready to be loaded into the Jury Plus System. Only the purged and
~ most accurate source list is loaded into the Jury Plus System.

2

Attachment “C”

JSIJUROR CANDIDATE LIST PROCESSING METHODOLOGY

The following are the steps that comprise JSI's Juror Source List process in Florida:

1.

5.

7.

CREATE EXTRACT FILE AND SUPPRESSION FILE

The Suppression File is created from JURY+ historical data. The Suppression File
consists of records of jurors that have been permanently excused, temporarily excused, and
exempt for other reasons according to client requirements.

The Extract File is created from JURY+ Next Generation database. The Extract File
consists of records of all jurors that have been loaded. From the Extract file, a Suppression

file is created using Clients suppression requirements.

-CONVERT DRIVERS FILE TO STANDARD FORMAT

Every file processed must be in the JURY+@ standard format (see attached document

-entitled CDF-Candidate Data File) so that the software understands where, within a record,

the various data fields are located,

CONVERT DECEASED FILE TO STANDARD FORMAT
Use the same method described in step 2.

CREATE A MATCH KEY FOR EACH DRIVERS AND EXTRACT RECORD
The Match Key consists of the Drivers-ID

SORT BOTH THE DRIVERS FILE AND EXTRACT FILE BY MATCH KEY

UPDATE DRIVERS FILE FROM EXTRACT FILE BY MATCH KEY

* Every Drivers File record is compared to every Extract File record by Drivers-ID. When a

match is found, the Voters-ID, SSN(Social Security Number), and PID(Person-ID) fields
are checked for data. The fields that are without data will be replaced with their respective

fields from the Extract File.

CREATE A MATCH KEY FOR EACH DRIVERS AND EXTRACT RECORD
The Match Key consists of the Full Name, Street Address and Date of Birth

| SORT BOTH DRIVERS FILE AND EXTRACT FILE BY MATCHKEY

UPDATE DRIVERS FILE FROM EXTRACT FILE BY MATCH KEY

The programs consider two records with the same Name and Address to be duphcates only
if: .

* The two birth dates are equal

e If either birth date is blank or zeroes

10.
11.

12,

13.

14.

15.

16,

17

Every Drivers File record is compared to every Extract File record by Match Key. When a
match is found, the Drivers ID, SSN, and PID fields are checked for data. The fields that
are without data will be replaced with their respective fields from the Extract File.

The Match Key build, sort, and update process are repeated using the Residential Address
on both Files. If there is no Residential Address on any given record, the Mailing Address

is used again,

CREATE A MATCH KEY FOR EACH DRIVERS AND EXTRACT RECORD
The Match Key consists of the Person-ID (PID)

SORT BOTH THE DRIVERS FILE AND THE SUPPRESSION FILE BY MATCH
KEY

REMOVE INTERNAL DUPLICATES WITHIN DRIVERS FILE BY MATCH KEY

- If the Person-ID of one record matches that of the next record on the file, the first record is

discarded.

SUPPRESSION MATCH BETWEEN THE DRIVERS AND SUPPRESSION FILES

BY MATCH KEY
Every Drivers File record is compared to every Suppression File record by PID. Drivers
File records that are not on the Suppression File are written to the #ew Drivers File.

CREATE A MATCH KEY FOR EACH DRIVERS AND SUPPRESSION RECORD
The Match Key consists of the Full Name, Street Address and Date of Birth

SORT BOTH THE SUPPRESSION AN]) DRIVERS FILE BY MATCH KEY

SUPPRESSION MATCH BETWEEN THE DRIVERS AND SUPPRESSION FILES

BY MATCHKEY
The programs consider two records with the same Name and Address to be duplicates only

if: .
* The two birth dates are equal
s If either birth date is blank or zeroes

Every Drivers File record is compared to every Suppression File record by Match Key.
Drivers File records that are not on the Suppression File are written to the output Juror

- Load File,

The Match Key build, sort, and matching process are repeated using the Residential
Address on the Suppression File and the Juror Load File, If there is no Residential Address
on any given record, the Mailing Address is used again. This will eliminate duplicates
where one file has a PO Box in the mailing address and the residential address in that field
and the other file has the residential address in the mailing address field. A report of the

eliminated duplicates is provided.

ELIMINATE INTERNAL DUPLICATES ON THE JUROR LOAD FILE

18.

19.

20.

21,

22,

This process determines if there are any duplicates among the Juror Load records. If the
Match Key of one record matches that of the next record on the file, the first record is
discarded.

The Match Key build, sort, and matching process are repeated using the Residential
Address on the Suppression File and the Juror Load File. If there is no Residential Address
on any given record, the Mailing Address is used again. This will eliminate duplicates
where one file has a PO Box in the mailing address and the residential address in that field
and the other file has the residential address in the mailing address field. A report of the .
eliminated duplicates is provided.

ELIMINATE JUROR LOAD RECORDS WITH INVALID ZIP CODES
Each Juroer Load record is evaluated as follows:

" a) If the Zip Code of the Mailing Address is blank the record is rejected

b) If the Zip Code of the Residence Address is not found in the County’s list of valid zip
codes, the record is rejected.

¢) If the Zip Code of the Residence Address is found in the County’s list of valid zip codes,
the record is then evaluated as follows: ‘

¢ Ifthe Zip Code of the Mailing Address is found in the County’s list of valid zip codes
the record is kept.

» Ifthe Zip Code of the Mailing Address is not found in the County’s list of valid zip
codes, and the client has told us to reject out-of-County mailing addresses, the record
is rejected — otherwise the record is kept.

d) If the Zip Code of the Residence Address is blank, the Mailing Address is evaluated as
follows:

 Ifthe Zip Code of the Mailing Address is found in the County’s list of valid zip codes
the record is kept.

CREATE RANDOM NUMBERS AND JUROR IDS
‘N’ number of random pumbers are created where ‘n’ is sufficient in relation to the number of

records on the Juror Load File. Each seven-digit random number is then prefixed with a two-
digit value that represents the year (i.e. ‘24’ is 2004 and ‘25" is 2005). See Attachment B,
document entitled “JURY SELECTION ALGORITHM FOR LEE COUNTY.”

APPLY RANDOM NUMBERS TO RECORDS IN THE JUROR LOAD FILE
Each record in the Juror Load File is assigned one of the random nine-digit Juror
Identification Numbers.

SORT THE JUROR LOAD FILE BY JUROR ID (JID)

CREATE SEQUENTIAL NUMBERS AND JUROR IDS

As more and more clients choose to load jurors more than once per year it has become
necessary to load randomly sorted jurors with a sequential JID because when random numbers
are generated twice in the same year there is no guarantee of uniqueness between the
occasions. That is, the unique JID 190001203 generated in January of 1999 has a chance of

being generated again in July of the same year. If 190001203 is generated and assigned to a
juror in July and a record with that JID as its key is loaded into the JUR Y+ database, it will be
rejected as a duplicate. Thus, once the Juror File is randomized using the random JID, a new
sequential JID is applied to each record. In January the JIDs might run from 190000001
through 190050000 for 50,000 jurors. In July the starting JID would be 190050001 and for
another 50,000 records would go through 190100000,

23. APPLY SEQUENTIAL NUMBERS TO RECORDS IN THE JUROR LOAD FILE
24, SELECT THE REQUESTED NUMBER OF RECORDS

If the Juror Load File contains 132,428 records but the client only wants
30,000, the first 50,000 are selected and written to the final outout Juror
Load File. The balance of the Juror Load File is kept in the data vault af
Jury Systems Incorporated. Due the low cost of hard disk space these days,
many clients have opted to load their entire Juror Load File into JURY+.

25, SEED VALUES
There are two seed values that are typed in as parameter values. They are a maximum of 5
digits a piece. Different values are passed than that of the previous loads’ seed values. Jury
Systems, Inc. arbitrarily creates the values,

26. VERIFICATION
Jury Systems, Inc will take the names of the potential jurors that have been loaded into the
NextGen application and download them onto a Compact Disc. Jury Systers, Inc, will then
write the seed values used in the process on the outside of the Compact Disc and forward
them to the Lee County Clerk of the Circuit Court,

Sample Statistics

Client ID: DVL, Name: Duval, FL. Period: Load 2004

Episode: 100632

Raw Files Canv #ofrecs #good # bad**
(primary) Drivers: Note: Voters and Drivers fields are filled in only when
Voters: we are performing a Merge/Purge, otherwise
Other:| 593,955 593,955 use the OTHER fields!}!
Commenis:
Input Files #ofrecs #of DMV #of ROV #ofother #misssre #ofinval Data Conv,
Drivers:
Voters: ‘
Other:] 593,955 593,955 593,955
Suppression:; 122,826 101,517 20,786 523 122,826
Comments:INGSupp=11,659; ClassicSupp=110,684; Dead File=483
Special Dup Elim #ofrecs #of DMV #0of ROV #of other # misssrc #of inval
Recs suppressed:
Qutput:
N/Aor Comments:N/A
Merge/Purge ffofrecs #of DMV #of ROV #ofother # misssre # of inval
Drivers:
Voters:
Other:
Mail Dups found:
Resi Dups found:
Voters/Other Out:
Merged Master:
N/dor Comments! [INfA
PersoniD Dup Elim #ofrecs #of DMV #of ROV #of other # misssrc # of inval
Internal Dup found; 5 5 :
Recs suppressed: 8,947 8,947
Recs passed:| 585,003 583,003
Special Dup Elim #ofrees #of DMV #0f ROV # of other # misssrc # of inval
Recs suppressed: 55,718 55,718
Output:}] 529,285] 529,285
N/Aor Comments:Matching by SSN

Supression Stats #ofrecs #of DMV #of ROV #of other # misssre # of inval
Mail Recs supp: 6,279 6,279
Mail Recs passed:[523,006 523,006

Resi Recs supp: 68 68
Resi Recs passed:| 522,938 522,938

Cleansing Stats #ofrecs #of DMV #ofROV #ofother # misssre #ofinval

Resi Int Dup found: 86 86
Mail Int Dup found:
Zip Code process: 1,190 1,190
Cleansed Master:| 521,662 521,662
NZA of Spilt for NCOA;
Balance of Split:
Comments:

N/A

Load Results H#ofreecs #Hof DMV #of ROV #ofother # misssrc # ofinval

Total Loaded: 80,000| 80,000
Bad Zips:
No First or Last Nm:

Balance File:] 441,662 441,662
Date:| 3/29/04 Source File Total (ROV/DMV/QOTHER) = 593,955

Juror Source List Processing Flow

Jury+©
Database

!

Perform
Create
Suppression
File

Suppreszion File Master Source
(Juror's not Fite
eligible to be on

new jury load)

Zip Code File .

(Drivers)

Perform Suppression
Process

(Matching on Name,
Address and Birth date)

Suppressed
Master
Source File

Deceased File

(Luval County uses
this fife)

'

Perform Suppression
Process
{Matching on Name and Birth

. date Only)

Deceased
Cleansed

Master Source
File

Perform Internal
Duplication Removal
Process (Matching on

Name, Address and Birth
date)

Perform Zip Code
Elimination Process

Perform
Rarndomization
Process

Juror Load
File

Attachment “B”

JURY SELECTION ALGORiTHM FOR LEE COUNTY

JURY SYSTEMS

INCORPORATED

JURY+ Next Generation

Universal Random Generator

Detailed Design & Functionality

. Notice

Techniques contained in this document are
considered proprietary to Jury Systems
} incorporated. They may not be revealed or
relemsed to any party without the express
written consent of Jury Systems Incorporated.

This material may not be copled or reproduced
in any form without the express written
permission of Jury Systems Incorporated,

©@October 2008

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

CONTENTS
1. introduction................ e b RS e 16
2. The Definition of the Universal Random Number Generator.........rerseseerress 17
3. Development of the Universal Random Number Generator......erevrnee: 18
4. JURY+ use of the Universal Random Number Generator.............. vrnetarsina e 19
5. Logic Specifications for the Universal Random Number Generator eeennn 20
6. Validation of the Universal Random Number Generatoreresersesceseeses 22

. APPENDIX A - The Universal Random Number Generator Program (C-

Language VerSion) ...ciuecivomsivmssssmssessisssssssssssssemsasssssansssaressnesanssnasssassnensevanes 23

. APPENDIX B - The JSI Implementation of the Universal Random Number
Generator (COBOL-Language Version)....overissene. I SR 27

lll. APPENDIX C -~ Toward a Universa'l Random Number Generator By George
Marsaglia and Arif SamMan.....au.wvverevesnnesrmerinconars voreeusaseTesmermrnerERERRsOuRE A 34
15

Do Vivwordiechrefinarsagli.doc

JURY+ Jury Management System
Universal Random Number Generator
Detalled Design and Functionality

1. Infroduction

This document describes the theory and structure of the random number generator that is
‘used by the JURY+ Jury Management System to perform those jury management
business functions that require randomization.

The random number generator employed by the JURY+ software is the “Universal’
_generator which appeared in an article written by George Marsaglia and Arif Zaman
who are part of the “Supercomputer Computations Research Institute and Department
of Statistics” at The Florida State University, Tallahassee. Also contributing to the article
was Wai Wan Tsang a member of the “Department of Computer Science" at the

Umversﬁy of Hong Kong.

The article (titled: “Toward a_Universal Random Number Generator” is Included in its
entirety as an appendix to this document.

Doci# ib\word\techrefimarsagli.doc 16

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

2. The Definition of the Universal Random Number Generator

The Universal generator algorithm is a combination of a Fibonacci sequence (with lags
of 97 and 33, and operation "subtraction plus one, modulo one™) and an "arithmetic
sequence” (using subtraction).

It passes ALL of the tests for random number generators and has a period of 2'% and is
completely portable (gives bit identical resuits on all machines with at least 24-bit
mantissas in the floating point representation).

The Universal random number generator employed by Jury Systems Incorporated in its
JURY+ application software is a frue, exact implementation of the algorithm defined in
"Toward a Universal Random Number Generator” and thus all randomness tests for that
process published in statistical literature applies to the JURY+ implementation.

Poc# \Ibwordtachrefimarsagll.doc 17

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

3. Development of the Universal Random Number Generator

In June 2006, the Fiorida State AOC required that all randomization for purposes of jury
selection be accomplished using the Universal Random Number generator described in
an article titled "Towards a Universal Random Number Generator® by George
Marsaglia. The Universal Generator is a combination generator. it combines two
different generators, the first of which takes two user seed values, converts them into 4
seed values and generates a sequence of 97 random numbers. These number become
“seed” values for the second random generator which uses them in a combination
process to combine the series of random numbers, producing a “Universal” value.

Previously, Jury Systems I[ncorporated used the “Marsaglia” random number generator
which is a feedback shift register (FSR) method to generate uniform random numbers
between 0 and 1, inclusive. The method was named for and based ypon the idea of
George Marsaglia (1968) who developed a coupled random number generator called
super duper. Super duper couples a multiplicative-congruential generator with an FSR
generator. This generator was subjected to extensive testing by Rand Laboratories and
shown to pass all randomness tests for all sample sizes likely to be encountered in the-
JURY selection process. This routine is a 2-seed routine, in that each number in a
random sequence is provided based on two seed values,

Using the referenced arlicie and a published C-language implementation of the
Universal random generator (both of which are included as an appendix fo this
document), Jury Systems Incorporated created a version of the routine for integration
into its JURY+ application for use in Florida and any other site that may desire it. The
J8I implementation was done in Augusi of 2006 and is a COBOL version of the routine.
A copy of the JSI implementation is also included in an appendix. '

Doc# \libword\techrefimarsagil.doc 18

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

4. JURY+ use of the Universal Random Number Generator

Wherever randomness is requisite in the JURY+ application, the Universal generator is
employed. Those application functionalities include the following:

. Source List Processing
When source lists are processed to supply juror names to JURY+, each member of

the list is assigned a random number. The list is then sorted by the random number
(known as a Juror Identification Number - JID) and the first 'n' records are selected

per client requirements.

. Juror Summonsing
When it is necessary to summoen jurors to a specific court and date, the full set of

eligible jurors is assigned a random number. The list is sorted and the first 'n’
number of jurors are selected.

. Panel Selection _
When requests for juror panels are received at the assembly room, the user

initiates a computer program to create a panel of the requested size. The computer
program provides a randomly ordered list of jurors available for service at that

moment.

Each juror in the pool is assigned a random number. Once all jurors have thus been
assigned a temporary unique number, the list is ordered by that number. Once the
panel jurors are selected from this list, the panel jurors are re-randomized and a
Case Information Sheet listing them is produced assuring that each juror has an
.equal opportunity to be the first seated for voir dire.

. Reporting
Many of the JURY+ reports allow the user to select list of jurors that re ordered

randomly.

Doc# Vibwordtechrefmarsagli.doc 19

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functicnality

5. Logic Specifications for the Universal Random Number Generator

The Universal Generator is a combination generator in that it combines two different
random generators o provide a random series that passes every randomness test. The
principal component of the two has a very long period, about 10%. It is a lagged-Fibonacci
generator based on the binary operation x times y on reals x and y. :

The Fibonacci generator has an extremely long period and appears to be suitably random
based on results of stringent tests that were applied to it. However, there is one test which
it fails: the “birthday-spacings test. In order to get a generator that passes all of the
stringent tests the first generator is combined with a second generator.

The choice of the second generator is a simple arithmetic sequence for the prime modulus
2%.3 = 168777213,

Detailed information regarding the theory behind the Universal Random number generator
is provided in the published article included as appendix C of this document. The article
provides a Fortran language version of the algorithm.

Sometime after the original article appeared, the Fortran program was converted info a “C”
programming language implementation and published. The "C" version is included as an

appendix to this document,

For implementation into JURY+, JS1 developed a COBOL. language implementation of the
Universal generator by duplicating the logic published in the “C” program. The JSI version
is also included in an Appendix to this document. _

To the greatest extent possible, the variable names used in the JSI version direbtly
correspond to identically named variables in the “C" implementation. This makes the
comparison of the two sets of logic much more straight forward.

A review of the "COBOL" version shows that there are two entry points (distinct processes)
in the Universal Algorithm. The first entry point is a routine “1000-set-seeds” (this
corresponds to the subroutine called "RMARIN” in the “C" version,

The 1000-set-seeds routine implements the “first” random generator in the Universal
process. Using two seed values supplied by the user, it creates four seed values and uses
them to create a Fibonacci sequence of 97 random numbers. This series of random
numbers is used in the creation of the Universal random number.

Additionally this routine: creates a representation of a second sequence (initially set to
362436/16777216 and referenced by variables "C”, “CD", “CM"). The Fibonacci series and
this series are combined (in the random number generation routine below) to create a

Universal Random number. ‘
Doci \ibwoerd\techrefimarsagli.dog

20

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

The second routine is 2000-Gen-Rand (this corresponds to the "RANMAR” routine in the
‘C" program). This routine generates a Universal Random number by combining the two
sequences (series) set up in the 1000-set-seeds routine.

First, two entries from the Fibonacci series (referenced with variables “I" and “J°) are
subtracted from each cther, (the first time a Universal random number is requested the
two entries referenced are 97 and 33 respectively) giving the basis for our Universal

random number. :

After the basis calculated, it replaces the Fibonacci number referenced by “I" (in
preparation for the next time a universal number is needed). Then, both references (1" and
“J”) are decremented. When either of the reference indicators (1" or "J") reach zero, they
are reset to their initial value (97 and 33 respectively). Thus the series of 97 numbers is
processed in a circular fashion. (All of this is in preparation for the next request for a

Universal random number).

Finally, the next number in the second series (which was initialized in 1000-set-seeds and
are represented by variables “C”, “CD", and “CM") is computed and combined with the
basis random number {(via subtraction). The result is returned to the calling program as a

“Universal” random number,

Doc# Vib\wardtechrefimarsagli.doc 21

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

6. Validation of the Universal Random Number Generator

As indicated in the “Towards a Universal Random Number”, the statistical “randomness” of
this routine has been thoroughly tested and documented. It is also clearly explained that
an appropriately coded algorithm, regardiess of the language it is written in or the
computer it is executed on, produces exactly the same “random” sequence when given

identicai seed values.

Thus, the validation (and thus proof of randomness) becomes one of showing that two
different implementation. produce the same known results when given appropriate seed

values,

The JS! implementation produces the same results as the program on which it was

modeled. The “C” version of the program indicates the following test to insure a properly
functioning Universal random number generator algorithm:;

Use IJ = 1802 & KL = 9373 to test the random number generator. The
subroutine RANMAR should be used to generate 20000 random numbers,
Then display the next six random numbers generated multiplied by

4096*4096
If the random number generator is working properly, the random numbers

should be:
6533892.0 14220222.0 7275067.0

6172232.0 8354498.0 10633180.0

These are exactly the results produced by calling the JSIRAND1 routine with seed value

1082 and 9373 and viewing the 20001 through 20006‘ random numbers..

Doc# Wibiworditechrefmarsagli.doc 22

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

L APPENDIX A - The Universal Random Number Generator Program
(C-Language Version)

‘Docit Mbhworditechrefimarsagli.doc 23

JURY+ Jury Management'System
Universal Random Number Generator
Detailed Design and Functionality

/**
/**

This random number generator originally appeared in "Toward a Universal
Random Wumber Generator" by George Marsaglia and Arif Zaman.
Florida State University Report: FSU-SCRI-87-50 (1987)

It was later modified by F. James and published in "A Review of Pseudo-
- random Nupmber Ganerators"

Converted from FCORTRAN teo C by Phil Linttell, James F. Hickling
Management Consultants Ltd, Aug. 14, 1989,

THIS IS THE BEST KNOWN RANDOM NUMBER GENERATOR AVAILABLE.
(However, a newly discovered technique can yield
a period of 107600. But that is still in the development stage.)

It passes ALL of the tests for random number generators and has a period
of 27144, is completely portable {gives bit identical results on all
machines with at least 24-bit mantissas in the floating point

representation).

" The algorithm is a combination of a Fibonacci sequence {with lags of 97

and 33, and operation “subtraction plus one, modulo one") and an
"arithmetic seguence” (using subtraction).

On a Vax 11/780, this random number generator can produce & number in

13 microseconds,
**/

#include <stdic.h>
#include <stdlib.h>
finclude <math.h>
#include <time.h>

#define TRUE 1

#define FALSE 0]

float w97}, ¢, cd, cm;
int 197, j97, test;

int rmarin{int ij, int k1}:
int rammar{float xrvec[], int len);

/**************w***w*ww***********w**************************************
This is the initialization routine for the random number generator RANMAR ()

NOTE: The sead variables can have values between: 0 <= IJ <= 31328
0 <= KL <= 30081

- The random number seguences created by these two seeds are of sufficient

‘length to complete an entire calculation with. For example, if several
different groups are working on different parts of the same calculation,
gach group could be assigned its own IJ seed. This would leave each group
with 30000 choices for the second seed, That is to say, this random
‘number generator can create 900 million different subsegquences -- with
each subsequence having a length of approximately 10730,

Doc# \lib\word\techrefmarsagll.doc

24

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

Use IJ = 1802 & KL = 9373 to test the random number generator. The
subroutine RANMAR should be used to generate 20000 random numbers.
Then display the next six random numbers generated multiplied by 4096%4096
If the random number generator ig working properly, the random numbers
should be:

6533892.0 14220222.0 7275067.0

6172232.0 8354498.0 10633180.0

LA R LA RS EE R ST R R R R EE R R E R R R *'k*'k**-k******************f

int rmarin{int ij, int k1)

{

float s, t;

int i, j, k, 1, m;

int ii, jj;

/* Change FALSE to TRUE in the next statement to test the
random routine.*/

test = TRUE;
IR ((IJ < 0 || IJ > 31328) |
{ KL < 0 [| KL > 30081))
{
printf (“RMARIN: The first random number seed must have a ™
“value between 0 and 31328\n”);
printf (™ The second random number seed must have a “
“value between 0 and 300817");
return 1;
}
i = [int) fmod(ij/177.0, 177.0) + 2:
-3 = {int)fmod((double)ij, 177.0} + 2;
k = {int) fmod(kl/16%.0, 178.0) + 1;
1 = {int) fmod{ (double}kl, 169.0});

for (ii1=0; ii<=96; ii++)

{

s = {float)0.0;
t = (float}0.5;
for { J4=0; J49<=23; ji++)
{
m = {int}frod(fmod{{double)i*j,179,0)*k , 179.0 };
i = 3;
i = ki
K = m;
I = (int)fmod{ 53.0*1+1.0 , 169.0);
if { fmod{{double}l*m,64.0} >= 32}
s =5 + t;
t = (float) (0.5 * t);
}
wuiii] = s;

}

Docit Uib\word\te chrefimarsagil.doc 25

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

c = (float) { 362436.0 / 16777216.0);
cd = (float) (7654321.0 / 16777216.0);
em = (float) {16777213.0 / 16777216.0);
197 = 9§;

j87 = 32;

test = TRUE;

return 0;

int ranmar(float rvec[], int len}
{

float uni;

int ivec;
if { ltest)
printf (“RANMAR: Call the initialization routine {RMARIN) *
“"before calling RANMAR.\n");
return 1;

}

for (ivec=0; ivec < len; ivectt)
{
uni = u[i97] - u{j97};
if (uni < 0.0F)
unl = uni + 1.0;

uli®7] = uni;

197w~;

if (i97 < Q)
197 = 96;

J9T~~;

if { 5§97 < 0)
J97 = 96;

c = ¢ - cd;
if (¢ < 0.0F)
CWC“I-Cm;'
uni = uni - ¢})
if { uni < 0.0F)
uni = uni + 1.0;
rvecivec] = uni;
}

return 0;

Doc# Vib\word\tachrefmarsagll.doc 26

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

. APPENDIX B - The JSI| implementation of the Universal Random Number
Generator (COBOL-Language Version)

Doc# \ib\wordwachrefmarsagh.doc 27

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

2 IDENTIFICATION DIVISION.

3 PROGRAM-ID, JSIRANDI,

4 AUTHOR. Jury Systems Incorporated.
5 DATE-WRITTEN. June 2006.

& DATE-COMPILED. 10-Nov-06 06:53.

R R R R R R R g e g A R A R R 2 2L 2]
9*(0)***w**

OLS444008000 000800 E404040000828084480434¢00¢08%0449%0444824¢4444C

IL*EYYEIeEY ¥Y¢ ¥¥Y YvY ¥¢¢ §YY YYVYYIeY(R) ¥+
12*YTYYYYeeyyy ¢99¥Y ¥¥¥ Y¥Y f¢¢ ¥¥¥ ¢ ¥Y¥YEY ¢veveees
I3*TLYYPEveve 9¥y¥y v¢t Y¥P ¥Y 9y TYEYTYY YYyYYTYH
la*yyy ¥¥¥ ¢yv¥y ¢¥¢ vy FIYeYEY vyeey LYy
15%¥YY ¥¥ ¥YYLYY ¢Y ¥¥Y ¢ 9YeYYE SUveVVeYYTY 9veviiew
16*¥¥9Y YYTYyYYY YeY Y vevYY SYRYYYYYIYY yyeviees

NSRS ESELEEER LR L0008 4004080408582 88080008400 40400042204044¢440%
I+ I Y Y Iy Y Y Y YOy Y Y SO vV Yy P Y YV Y e e ey v veveyyeeesseeyyvyys
19+ P TIvevisessydvsy N E X T GENERATTION T¥VOYeeeeeyyeodes
PAER SR SERARRSREEE LS040 4440 E 040068068088 808000408040500482040004
ARA S S S SR SRR LR L2000 0SR20 0428440084 04020824428 8402¢4¢44
22 Y Y IY I Ty YT ey e vy e e eveeeY¥{¥rrom Jury Systems Incorporated?+*

23**i*************************
24**

25%% COPYRIGHT (C) 1998, by Jury Systems Incorporated **
26%* ALl rights reserved. An unpublished waork. **
27%+ *

28** TRADE SECRETS NOTICE: ALL RTGHTS RESERVED. This material o
25** contains the valuable properties and trade sscrets of Jury **
30*%* Systems Incorporated, a California corporation, embodying *F
31** gubstantial creative efforts and confidential information, **

32** ideas and expressions, no part of which may be reproduced w
33** or transmitted in any form or by any means, electronic, il
34%* machanical, or otherwise, including photographic and **
35** recording, or in connection with any information storage **
36%* or retrieval system without written permission from wx

. * b

37** Jury Systems Incorporated.
38#** h

39**

AQF Rk hhkhFdhhbdhh bk kkd Ak h bk ke ko wk bk ok kh b hhh ko h b kb d kb bk kv h ke h kR wr
* %

* %

47 %%
42** PROGRAM DESCRIPTION: *
43** * &
'44** w K
45** JSIRAND1 - Produce a uniform, normal and exponential >k
46x* random number. *k
477 % * * %
4%+ This routine uses logic of a 4 seed Universal random L
49** number generateor as described and documented by * ok
S50%+ George Marsaglia and adopted by the State of Florida. il
571 % * &
52%+ The MicroFocus calling sequence is as follows: i
53** * &
54%x% CALL JSIRAND] using JSIRAND-PARM-BLEK, **
ER** L
L Modification Log ——w==———c—-momm e **

Doc# Vib\worditechrefmarsagll.doc 28

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

wF

57+% mm/dd/yy uuu ~ XXKRXERRKEXXXAAEXAAXEAXKAKREK KR E XK LR IX KKK KA
* %

5@+
59**k*****************
60 ENVIRONMENT DIVISION.

61/

2 CONFIGURATION SECTION.

63 SOURCE-COMPUTER.

64 IBM-PC,

65 OBJECT-COMPUTER,
66 IBM-PC,

67/

68 INPUT-OQUTPUT SECTION.
69 FILE-CONTROL.

70

71 DATA DIVISION.

72 FILE SECTION,

73
74************************k***
Thxh* WORKING-STORAGE SECTION *kw

FEFFhFhdhhhdkhdhdh kb dhdhhhdd b hhhdhhhd bk bbbk hdhhkdhh hohhhodwd ok odok bkt kodok o

77 WORKING-STORAGE SECTION,
78

TOkkhhdhkhhkhkh

80*** Constants
81*************

82

83 78 78-dflt-seed-IJ value 10B2.
84 78 7B-dflt-seed-KL value 9793.
85

86*************

B7*** The following working storage data names for the various work
88*** fields are taken directly from the document provided by the
B9*+* State of Florida. This makes logic compariscn between the two
90***% program and dogument simpler,

91***
92*************

93

94 01 workIntegers.

- 95 05 I " pic x(04) comp-5 value O,
96 0S5 1T piec x(04) comp-5 value 0.
97 05 g pic x(04) comp-5 wvalue 0,
98 05 K pic x(04) comp-5 wvalue (.
99 05 L pic x(04) comp-5 walue 0

100 05 M pic x(04) comp-5 wvalue 0,

101 05 IJ pic x%(04) comp-5 wvalue 0O,

102 05 KL . pic %(04}) comp~-5 wvalue 0O

103 05 di~temp pic x(04) comp-5 wvalue 0.

104

105 01 floatValues.

106 0s O . comp-1 occurs 97,

107 05 ¢ comp-1,

108 05 CD1 comp-1.

109 05 cml comp-1.

110 05 8 comp-1.

Doci# \libwordfechrefmarsaglidoc 29

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

111 05 T comp-1.

112 05 UNI comp-~1.,

113

114

115/
ll6**'k****-k'k*********-k***1\—*****************************i—#********ﬁ***
117we* LINKAGE SECTION b

118*****'lr**\\"k**-k**************************ﬂ'********'A‘**'ﬁ:k*-p\--n\'-k‘k*‘kk'k**1\‘*

119 LINKAGE SECTION,

120
¥ 121 COPY "M"JSIRAND.UWS". :
*

124* JSTRAND. UHS

126* (c) Jury Systems Incorporated, 1998 All rights reserved.

129* This copylib defines data fields needed as arguments for
130* the JSIRAND subroutine.

132%e = = = = = - - - Modifications
133* mm/dd/yy Uuu — REXARXKKHXXEXXKAXKEKKXKERKEKLRERERHHRXKRR X XRKEK

****************************i_***

135%*

136

137-78 ~JSIRAND-78-SUB-NM VALUE ‘'JSIRAND',

138 78 JSIRAND-78-RAND1-SUB-NM VALUE 'JSIRAND1'.

139

140 01 JSIRAND-PARM-BLK.

141 05 JSIRAND-FC-FUNC-CODE PIC 9(01} VALUE ZERC.
142 88 JSIRAND-FC-SET-SEEDS VALUE 1.

143 88 JEIRAND~FC~GEN-RAND VALUE ZERO.
144 05 JSIRAND-SEEDL PIC 9(05) COMP-5 VALUE ZERO.
145 05 JSIRAND-SEEDZ2 PIC 9(05) COMP-5 VALUE ZERO.
146 0% JSIRAND-NBR-AREA. i i

147 10 JSIRAND-RAND-NBR PIC 9(07).

148 ' 10 FILLER PIC 9(01},

149 05 FILLER REDEFINES JSIRAND-NER-AREA.

150 10 JSIRAND-RAND-NBR-B PIC $(08).

151 05 JSIRAND-NOTUSED CPIC X(08) VALUE SPACES.
152 : :

153*** FEnd of JSIRAND.UWS %#*¥* '

154 '

155/

R T A R R Lt L R
15T7* %% PROCEDURE DIVISION *Hk

TEBH ket et kodk ek K ke e ok o e o ok ok o ok ok ke ok ok ke o ok o ke ok ok ek ek ok ko
15% PROCEDURE DIVISTON USING JSIRAND-PARM~BLK.

160

161 O00O0-MAIN.

164+%** BEither generate a uniform random number or initialize the
Doc# Mib\word\tachrefmarsagli.doc 30

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

165%*% seed values depending upon function request.
lgo*+* ’ ' '

167 IF JSIRAND-FC-SET-SEEDS
168 PERFORM 1000-SET-SEEDS
169 SET JSIRAND~FC-~GEN-RAND TC TRUE
i70 ELSE
171 PERFORM 2000-GEN-RAND
172 END-IF
173 CONTINUE,
174
175
176 0000-PGM~EXIT.
R hd
17R**%
179
180 EXIT PROGRAM.
181
182/
183 1000-8ET-SEEDS.
S Y- 7 *
185++%*

186%*+* Initialize starting values from seed values passed in
187+*** by user.

188#%w*
189

190 MOVE JSIRAND-SEED]L TO IJ

191 MOVE JSIRAND-SEEDZ TO KL

192

193 *> Insure seeds are in proper range

194 if IJ < 0 or IJ > 31238

195 move 7B-dflt-seed-IJ to IJ

196 end-if :

197 if KL < 0 or KL > 30081

198 move 78-dflt-seed-KL to KL

199 end-if

200

201 *> Take 2 user ilnput "seed" values and convert to 4 seeds
202 compute I = function med{IJg/177, 177} + 2

203 compute J = function mod{IJ, 177) + 2

204 compute K = function mod(KL/1692, 178) + 1

205 compute L = function mod{kl,, 16%2)

206

207

208 *> Fill a 97 element array with randem distribution
209 PERFORM VARYING IJ FROM 1 BY 1

210 UNTIL IT > o7

211

212 MOVE ZERO TQO 8

213 MOVE 0.5 TO T

214 PERFORM 24 TIMES

215 COMPUTE M =

216 FUNCTION MOD{FUNCTION MOD(I*J, 178) * K,
217 MOVE J TO I

218 MOVE K TO J

Doc# VibWword\techrefimarsagli. doc

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

219 MOVE M TO K
220 COMPUTE 1 =

221 FUNCTION MOD (53 * L + 1, 169)
222 IF FUNCTION MOD (L * M, 64) >= 32

223 COMPUTE S =8 + T

224 END-IF

225 COMPUTE T = 0.5 * T

226 END~PERFORM

227 MOVE S TO U(II)

228 END-PRRFORM
229 COMPUTE C
230 COMPUTE CD1
231 COMPUTE CM1

232
233 *> Initialize I and J which will be used as indexes

234 *> by the generation module.
235 MOVE 97 TO I

236 MOVE 33 TO J

237 CONTINUE.

238

239

240/

241 2000-GEN-RAND.

362436 / 16777216
7654321 / 16777216
16777213 / 16777216

1

244*** Generate a uniform, normal and exponential random number

245% %%

246*** Be sure that the "set-seed” function has already been called
247***

248 IF I = ZERC OR J = ZERC

249 PERFORM 1000-SET-SEEDS

250 END-IF

251

2H2% %%

253*** Use the previously generated table to create the new number

2H4* k&

255 COMPUTE UNI = 0U{I} -~ O{J}

256 IF UNI < ZERO

257 ADD 1 TO UNI

258 END-IF

259

260 *> Put the current Random number Into the table for use in
261 *> later iterations...

262 MOVE UNI TO U(I})

263

264 *> Recycle I and J when they reack the beginning of the
265 *> random array :

266 SUBTRACT 1 FROM I

267 SUBTRACT 1 FROM J

268 IF I =0

269 MOVE 97 TO I

270 END-IF

271 IF J =0

272 MOVE 97 T0 J

Doc# \ib\word\achreAmarsagll.doc 32

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

273
274
275
276
277
278
279
2890
281
282
283
284
285
286
287
288
289
280
291
292
233
294
285

296% k¥

Doc# Vibworditechrefimarsagh.doc

END-IF
COMPUTE C = C - CD1
IF ¢ < ¢
COMPUTE C = C + CM1
END-IF

COMPUTE UNI = UNI - C
IF OUNI < 0
ADD 1 TO UNI

END-IF

*> 5hift fractional bits left 24 times giving whele decimal

*> number,
COMPUTE JSIRAND-RAND-NBR-8 = {4096 * (4096 * UNI)}

*> Compute 7 digit random number by dropping leas 31gn1f1cant

*> digit and rounding
COMPUTE JSIRAND~RAND-NBR ROUNDED
= (4096 * (4096 * UNI}} / 10

CONTINOUE,

End of Jjsirand2.CBL **+*

33

JURY+ Jury Management System
Universal Random Number Generator
Detailed Design and Functionality

H. APPENDIX C — Toward a Universal Random Number Generator By George
Marsaglia and Arlf Saman

Doc# \ibwordtechrefimarsaghi.doc 34

Sraistics & Probability Letters 8 (1993) 35-39
North-Holland

January 1990

TOWARD A UNIVERSAL RANDOM NUMBER GENERATOR

Greorge MARSAGLIA and Avif ZAMAN

Supercanpiser Compurarions Rerearch Intinne and Depariment of Stativsics, The Florida State Uninersity, Talfahuss

Ff. 32306, USA

Wai Wan TSANG

L

Department of Computer Seionce, University of Hang Kong, Pokfulen Road, Hong Kung

Hoveivad December 1987
Revised June 1988

Absgmety Thix anicle deseribes an approach towards 4 random numbsr generaror shat pagses alh of the suringeat wsis (ot
randomness wo kave pat 1o it, and that is able 10 produce exsctly (he same sequenee of iniform random varizbles in 4 wite
variely of computers, including TRESS, Apple, Macinwash, Commodore, Kaypro, TBM PC. AT, PC and AT clones. Sun, Vax,
1BM 3607370, 3090, Amdahl. CDC Cybar ard even 205 and BTA, supereomputers.

Keywordy: Random number geperator,

1. Introduction

An cssential property of a random munsber geper-
afor is that it produce s satisfactorily random

. sequence of nombers, Increasingly sophisticated

uses have raised questions abont the suitability of

- many of the commonly available generators (see,

for example, Marsaglia, 1986) Another shortcom-
ing @ many, indeed most, random number genera-
tors is they am not able to produce the samie
sequence of varlables in a wide variety of com-
puters. Such a requirernsnl seems essential for an
experimental science that lacks stindardized
equipment for verifying results.

- We address these deficlencies here, suggesting a
combination geneeator tallored particotarly for re-
producibility in all CPUs with ar feast 16-biy
integer arithmetic. The random numbers them-
selves are reals with 24-bit feactinns, uniform on
{0, 1). We pravids & suggestsd Fortran implemen-
tation of this “universal”™ generator, togethar with
sugpested samnple output with which one may verify
that a particular computes produces exacily the
same bit patterns as the compuiers enumerated in

OLELTIEL/90,/53.50 0 1990, Elsevicr Sismoe Publithers B,Y. (North-#otand)

the abstrace. The Fortran code is o straightfor-
ward that versions siay be readily wronen for
ethier languages; so far, correspondents have writ-
1en or coafirmed resalts for Basie, Fortran, Poseal,
C, Moduta II and Ads versions.

A list of desirable properties for a random
mumber generator enight include:

{1} Randontmress. Provides a sequence of mde-
pendent uniform random variables suitable for all
reasonable applications. In purticular, passes all
the latest tests for randomness and independence.

(1) Long perind Able to produce, without re-
peating the initfal sequence, all of the random
variables for the huge samples that eurrent com-
puter speads miakes possible.

(3) Efficiency. Hxecution is rapid, with modest
memory requirements.

(8) Repearabifiry, Initial condivions (seed wval-
uts} completely determineg the resulting sequence
of random variables,

(%) Poriability. Identical sequences of random
variables muay be produced in a wide variety of
computers, for given starting values.

(6) Homageneins, Al subsets of bits of the

35

Volume 4. Number |

nurabers nrust be tandom, (rom the most- o the
Teast-significant bits.

2. Choice of the method

We seek a generator that has all of these desirable
properties. (AT Well, almost all; the generator we
propose falls shor on efficiengy, for t1'is tlower
than some of the standard, simple, machine-de-

" pendent generators. But all of the standard gener-

ators fail one or more of the stringent tests for
randomness, Sec Mussaglia, 1986.)

Our choice (s 2 combination generator. It com-
bines two different generators. The principal eom-
ponent of the twa has a very long peciod, about

10%, 1t is a lagged-Fibonacci genecator based on

the binary operation x+y on reals x and p de-
fined by

Cxey={ifxzp then x—p, else x =y + 1}

Ultimately, we require a sequence of reals on
[0, 1 Uy, Uy, Bjyee, each with a 24<hit fraction,
We choose 24 bits because it is the most common
Eraction size for single-precision reals apd because
the operation x =y can be carrled out exacily, with
o loss of bits, in most computers—those with
reals having fractions of 24 or more bits,

This choice allows s 10 vse a lagged-Fibonacel
genetator, designated F(r, s, *), i the bagic com-
ponemt of our ustiversal generator. It provides &

" sequence of reals by means of the operation 2y

X, Xz, Xygeeny Wilth X, =X, 0, .

Thes Jags » and ¥ are chosen so that the sequease
15 satisfactorily random and has a very fong poriod,
If the indtial (seed) values, x,, x,,..., %, pre cach

© 24-bit fractions, x,= J,/2™ then the resulting se-

quence, generated by x, =X, x, .., Wil pro

- duce & sequence with. period and structure klentl-

cal w that of fhe corresponding sequence of in-

tegers,

oLy by with fm), —i,_, mod 2%
For suitahle choices of the lags r and & the

period of the sequence Is ¥ — 1D x 2% The

need to choose r large for long period and ran-
dompess must be balanced with (he resolting

36

STATISTICS & PROBABILITY LETTERS Jerunry 19590

memory costs: a table of the ¢ most recent »
valpes must be stored. We have chosen »w 97,
#w 33, The resulling cost of 97 storage locations
for the ciroular list needed to inpleraent the gan-
srator seems reasonable. A few hundred memory
locations mora or less is no Joniger the prablem it
vsed to be. The prriod of the resulling generator is
(2%~ 1) x 2%, gbout 2'2, which we hoost to 2'%
by the other part of the combination generator,
described below, Methods for establishing perjods
for lagged-Fibormacci generators are piven in
Marsaglia and Tsay (1985),

3. The secoud part of the comdbination

We now turn 1o choice of & generator to combine
with the F(97, 33, «) chosen shove. We are not
content with that generator alons, even though it
has an extremely long pericd and appears to be
sultably random from the stringent tests we have
applied o it. Bug it fails one of the tests: the
birthday-spacings test. A typical version of this
rest goes as follows: let each of the pgenevared
values xj. X3,..., represent & “birthday” in a
“year” of, say, 2** days. Choose, say, m= 512

birthdays, X, Xpy.0.0 X SOt thise 1o get X, €

Xy & ¢ & Xy Form spacings y=xgn M=
X Xap B X Xegavees Yoo ™ o) ™ Keawiy
Sort the spacings, getling Jy, Sl € ~** € Hw)
The test statistic is J, the number of duplicate
values in the sorted spacings, i.e., initialize J « 0
then for i=2to m, pot J&=J+1if ypyvevy oy
The tesulting J should have a Paiison dustribution
with mean A = m*/{dn) = m? /2%,
Lagged-Fibonacct generators F{r, », «) fail this
tesl, unless the Iag » is more than 500 or the
binary operation ¢+ is muldplication for odd in-
tegers mod 25, The count J, the number of dupli-
cate spacings, is only asymptotically Poisson dis-
uibuted, requiring that a, the length of the year,
be large, Applications of the birthday spacings test
typiedlly choose # to be 100000 of more—for
example, using the leflmaost 18 or more bits of the
rmandom numtber to provide a “birthday™. _
Detailed diseusdon of the test and test results
will sppear elsewhere, but here are resulis of o
typleal test on four different generavors (see Table
1): two fagged-Fibonacei genecators using subtrac-

Volume 9, Number |

STAYISTICS & PROBABILITY LETTERS

Fanuary 1990

Tabide §
A bicthday-spacings test for four gencratorns
duplizate: number F{97,33, ») F(55, 24, -} F(T, 33, «} vongraential
spocings wxpecied abserved ohserved ohserved obrerved

¢ 3699 4] i 1]

1 679 1& 14 32 k1

Z 18.39 18 M 20 A%
pI 20y M 3 6 7
chi-squame for ¥ 4.5, 4.3 56.91 1.5 (18]
probability of better it 1.0000 1.0000 0432 0.33

tion, u lagged-Fibonacd generator using mnitipi-
carion on odd integers, and a popular congruential
generator, x,, = 6906%x,_,, all for modulus 2%,
The lofimest 25 bits are used w ¢hoose one of 512
birthdays, Thus n= 2% and m = 2% so J should
be Poisson disteibuled with dewmd /(An)y =1, Of
the four, only the F(97, 33, «) and the congruen-
tial generator pass. The two lagged-Fibomacei gen-
erators using subtraction fail the rest. Their
duplicate-spacing counts are far from Poisson dis-
tribuled, and remaln so, whatever the choice of
seed values, {and for a wide variety of choices of
n rrand lags r, v as well).

In order to get & generator that passes gif the
stringent teses we have applied, we have resosted
- 1o combining the F(97, 33, +) gencrator with a
second generator. Combining differeni generators
has stropg theorotical support (sc¢ Marsaglia,
1985).

Our choice of the second generator is a simple
arithmetic sequence for the prime modulus 2%% - 3
= 16777213, For an initia) integer 7, subsequem
integers are J-k, I-2% [F-3%&...,mod
16777213, This may be implémented in 24-bit
reals, again with 1o bite lost, by letting the inffis!
value be, say ¢ = 362436 /17666216, then forming
successive 24-bit reals by the operation ¢ d, de
fined as

ced={if e d then ¢~ d,
else ¢ ~ 4+ 16777213 /167172161

Here d is some convenlent 24-bit rational, say
d= T654321 /16777216, The resnlting sequence has
periad 2% — 3, and while it is €ar too regular for
use alone, it serves, when combined by means of
the « operarion with the F{97, 33, *) sequénce, to
provide a composite sequercs that meets all of the

criteria mentioned in the introduction, except for
sificiency. All of the operations in the combina-
tdon generatr are simple angd efficient, and the
genergtlon part is qgoite simple, but the setup
procedure, setting the Initisl 97 x valuss, {3 more
complicated than the generating procedure, We
now turn to details of iraplementation.

4, tTmplementation

We have two binary operations, sach able to pro-
duce exact arithmefic on reals with 24-bit frac.

tions:
xy={if xpy then x-—y, else x - p+ 1},
codw [if ¢ d then ¢ — d,

else ¢ — d + 16777213 /167771216)

We require computer instructions that will gener-
ate IWG Sequences:

Kin Xou Xdavavn Hygys Xogaers
with Xp = Xp gy Xnwsys
Cie €34 Cyprnay

with ¢, = ¢,.., ¢ (7654321 /16777215,
Then produce the combined sequence
U, Uy Uayeen

The ¢ sequence requires only one initial value,
which we arbitrarily set to ¢, = 362436 /16777216,
The x sequence requires 97 initial {seed) values,
each & real of the form /16717216, with 0 g F <
16777215, The muin problem in implementing the
utiverssl generator is in finding a suitable way to
sel the 97 indttal values, a way that is both random
and consistenst [rom one computer to another.

withl], =x, =¢,.

7

Volutne 9, Number 1

Table 2
Farran subprograms for injgializing and calling NI

STATIETICS & PROBABILYTY LETTERS

Junuary 1990

SUBROUTINE RETART (L J, K. L)

FUNCTION UNK)

REAL LS C#+s» FIRST CALL RETART (J, L. K, L)

COMMON /SET1/ U, C, CD, CM, IP, JP Cess WITHL I K, LINTEGERS

DO21I=197 Cres FROM | TO 168, NOT ALL

Swi Coew NOTE: RETART CHANGES I,)L K, L

T3 Csss SOBECAREFUL IF YOU REUSE
DO3ITNe12s Cenrs THEM INTHE CALLING PROGRAM,
M w MOD (MOLKT o 1, 179K, 17 REAL UEh
I~y COMMON /$ET1/ U, C, CD, CM, IP, JP
Je=X UNI = L(IPT - LRI
KeM IFUNLLT.0.) UNIL = UNL+1,
Low MOENS3Ie L+ 1, 169} V) » U
IF{MOD{L » M, 64)GE.32) § %S4 T g

3 TwiSeT IF(FP.EQO) TP =97
2 UQiyes§ Jirwe yp -

C = 352436,/167T1216. WFEIREQ) JF =97

CD = T654321, /167771216, C=C-CD

CM = 16771213, /16713416, IRCETH)Cm Ce CM

IP=97 UNT s UNI~C

IB w33 IFUNLLTO) UNL =~ UNF42

RETURN RETURN

END END

The F(97, 33, -~ mod 1) generator is quite
robust, in that it gives good resulls even for bud
imitial vatues, Nonetheless, weo feel that the initial
table shoold jtselfl he filled hy means of o good
genecator, one that nead not be fast becausa i1 is
‘used only For the setop. Of course, we nvight agk
that the user provide 97 seed values, each with an
akact 24-bir fraction, but that seems too great a
burden. After comsiderable expedimentation, we
recormmend the following procedure:

Astign vilugs bit-by-bit 1o ithe initlal table
U, UE),..., U097 with a random sequence of
bhs 6" b;u bj! wnax Thus U(l} = O-bzb: ere b:,h
IA2) = Q.bygbyg . o &y and 0 on. Tha sequence of
bits is gencrated by combining two different gen-
exaiors, each suitable for exact implementation in
any computer: one n 3-lag Fihonacoi generator
using multiplivation, the other an ordinaty con-
gruential generator for modulug 169,

The two sequences that are combined 1o pro-
duce bits b,, by, by,..., arer
DT TIN T3S PREP

“with =y, X Yooy X g Mmod 179,

Tin B39 L3y Agrevsy
with 2, = 53z, + 1 mod 168.

Then &, in the sequence of bits is formed as the
sixth Bt of the product yr, using operations
which may be carried out in most programming
languages: b = [if vz, mod 64 < 32 then 0, else
1

Choosing the small moduli 179 and 169 ensures
that arithmetic will be exact in all computers, after
which combining the two generators by multipli-
cation and bit extraction stays within the range of
16-bit integer arithmetic, The result is a sequence
of bits that passes extensive tests for randominess,
and thus seems well suited lor initiafizing a uni-
versal generator,

The user's burden is reduced o prowiding three
seed values for the 3-lag Fibonacel sequence, and
ons seed value for the congruential sequence 2, =
53z ..+ 1mod 169 For Fortran implementa-
tions (see Table 2y of the universal generator, we
recomamend that a table O(1),..., 97) be shaped,
in (labelled) common, with a setup rontine; say
RETARI(, J, K, L) and the funcdon subprogtam,
ORK), that returns the requived uniform variate,
An alternative approach is to have a single sub-
program that ncludes an entry for the sewmp pro-
cedure, but not afl Fortran compilers allow ymadis
ple entries to a subprogram. The seed values for

Volume 9, Humber |

the setup are t, 4, k and 1, Here 1, 1, ¥ must be in
the range 1 to 178, and not ull 1, while & may be
any imteger from 0 to 168, If {positive) integer
values are aseigned to 1, 3, X, L outside the gpeci-
fiad ranges, the generator will still be satisfactory,
bul may not produce sxactly dhe sume bit patterny
in different computers, beczuse of yncenaintics
when integer operations involve more than 15 bits,

To use the generator, one must first call
RSTART(L, X, K, L) to get up the tzble in labelled
common, then get subsequent uniforms random
varisbles by using UNi() in an expression as, for
cxample, in X = eNK) oF Y= LEpNK) -
ALOG(RI)), ete.

5. Yerifying die universallty

We now suggest a short Fortran program for
verifying (hat the universal generator will prodoce
exactly the same 24-bit reals that other computers
produce. Conversion to an equivalens Basic, Pes
cul or other program should be transparent, but
those who wish to may get the setup, generating
and verificadon programs for varlous languages
by wiitiog, (o the authors,

Assume fhen that you have implemented the
UNY routine with is RETARY setup procedure in
your computer. Running the short program of

Table 3, or an equivalent, should produce the

output as shown in Table 4.

If it does, you will almost certainly have a
universal random number generator that passes all
the standard tests, and all the latest—mora sirin-

gent--tests for randomness, has an incredibly long

STATISTICS & PROBABILITY LETTERS

Jusuery 1996

Talle 3

CALL RSTARTQZ, 34, 56, 78}
X6 11 =1, 20005
X = UNI()
& TR gr.20000)
print 21, (MOIXINT(X ¢ 16 ¢ 11, 16), 1= 1,)
21 FORMAT(SX, 713

END
Tublc 4
] 3 1i 3 L] 1]
13 ¥ 13 1l 11 14 Q
& 15 4] 2 3 11 [H]
5 14 ! 14 4 8 1]
1 13 i W 12 2 0

period, about 2%, and, for given RSTARY values 1,

5 K, 1, produces the same sequence of 24-bit reals

as do almast all other commonly-used compuiers,
Good Tuck,

Referonces

Mersaghy, & {1986), A carrent view of random number gener-
ators, Comprter Soience and Stavisticr: Proc. 16th Symp.
Tmertace, Attanta, March 1984 {Elsevier Science Publishers,
Amsterdam). ‘

Marsaplia, G, and L. Tsay (1985), Matrices and the structurg
of random nurpher soquences, Livear Algebra Appl 67,
14711586,

9

